3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Микросхема светодиодной лампы

Схема светодиодной лампы на 220 в

Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

  • C1 – значение емкости по таблице, 275 В или больше
  • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
  • R1 – 100 Ом
  • R2 – 1 MОм (для разряда конденсатора C1)
  • VD1 .. VD4 – 1N4007

Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.

Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.

Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

Навигация по записям

15 thoughts on “ Схема светодиодной лампы на 220 в ”

Даже с «выброшенным» стабилизатором, светодиодная лампочка для подъезда получается слишком дорогой. Там лучше вкрутить обычную лампочку «Ильича Эдисона» с диодом, который монтируется в слегка модернизированный патрон.

Не в патрон, в выключатель, там больше места.

Не знаю, что слишком дорогого увидел здесь Игорь, но, уж если экономить по полной, то можно выкинуть сопротивления и мост. Останутся: С1, как реактивное сопротивление, один диод для выпрямления переменки и С2 (емкость увеличить в 2-3 раза) для сглаживания пульсаций. Затраты на питание и замену ламп накаливания гораздо выше, чем, даже первоначальный вариант схемы. Очень уж они неэкономичны, причем, во всех ракурсах. От них и избавляются поэтому везде, где только можно. А в подъездах — это архиважно и архинужно, как говаривал Ильич.

У лампы накаливая маловат ресурс, на коробке пишут 1000ч, при круглосуточной работе это 42 дня. В лучшем случае лампочка прослужит несколько месяцев.
Питание лампы однополупериодным напряжением должно значительно увеличить ресурс ( якобы до 100 раз ), вот только светоотдача упадет больше чем в два раза. И лампочка будет мерцать с частотой 50Гц.
Чтобы вернуть частоту к 100Гц, достаточно включить две одинаковых лампочки последовательно — и ресурс возрастет и частота не снизиться.

В первой схеме конденсатор С1 надо брать на большее допустимое напряжение в сети 220 в это действующее напряжение Максимальное 220*1,42= примерно 320 в к тому же как правило На конденсаторе указывается на постоянное напряжение а в сети 50 герц . Я рекомендую брать не меньше 450 В. Один диод как пишет Greg не пойдет так на светодиоды или выпрямительный диод будет действовать обратное напряжение.Я рекомендую Выкинуть диодный мост и С2 параллейно светодиодам в обратной полярности поставить диол один период пойдет через светодиод другой через силовой диод. Светодиод можно взять из не исправных фонариков.

Ну, обратное напряжение светодиоды должны выдержать, но идея хороша. Зачем терять один период? С2 — выбрасываем, да, а вместо предложенного Олександром силового, ставим еще один световой — пусть моргают попеременно, усиливая общий световой поток и защищая друг дружку от обратного напряжения. А учитывая, что сверхъярких светодиодов, в некоторые фонарики тулят штук по 20, наковырять можно много. Можно и целиком взять, у многих ручных фонарей — ручка выполнена в виде удлиненной лампочки кругового рассеивания.

Данную схему можно не только в подъезде как предполагает (Игорь ) но где угодно, например освещение приусадебного участка по схеме Greg через понижающий трансформатор для безопасности и две группы светодиодов включенных параллейно и в противоположной полярности.или освещение кессона, душа летнего.

Я часто видел в подъездах мерцающие лампочки накаливания, где использовался «хитрый» патрон с одним диодом. По моему самое то для подъезда, экономия энергии и непрезентабельный вид. Вот для дома схема №1 вполне подойдёт, скопирую её себе.

разобрал «замолчавшую» светодиодную лампу на 11 ватт(100 эквивалента к накаливанию). То что автор называет драйвером, обычный инвертор, схема которого вошла в быт повсеместно, от лампочек до компьютеров и сварочных аппаратов. Так вот на моей лампе стоит 20 диодных светоизлучающих элементов. Исследуя их я пришел к выводу, что они включены как елочная гирлянда — последовательно. Обнаружить неисправный диод не составило труда. Припаяв перемычку из резистроа порядка 50 ом, лампа восстановилась. Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.
Дале — у меня есть фонарь ЭРА летучая мышь, с 6 вольтовым АКБ и люминесцентной лампой. Эта лампа светит очень гумозно при своих 7 ваттах. А АКБ хватает на 4 часа. Что я сделал — выпаял из схемы «драйвера» диодный мост и плату со светоизлучателями. В точки пайки проводов от инвертора обозначенные + и — , впаял этот мост соблюдая полярность. На вход моста подал переменное напряжение которое вырабатывал штатный генератор «Эры». Лампа заработала как надо. Светоотдача осталась той же как и от сети 220 вольт. Поскольку холостой ход генератора обеспечивал это напряжение на светоизлучателях.
Как то вот так.

Читать еще:  Марка электродов для инвертора

Ох и понапописали вы тут, однако. Я бы, с такой то логикой, посоветовал держаться от электросети подальше. Насчет инвертора — это как раз то, что стоит в вашей лампе ЭРА и преобразует 6 В постоянного напряжения аккумулятора в 220 В переменного. Хотя, инвертор может и понижать исходное напряжение — не суть важно. Важно, что вы абсолютно не понимаете значение этого и других терминов, а ваш вывод: «Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.» — абсурдно.

есть простая схема подключения светодиодных ламп и работать она будет экономичнее покупной . даже если вы в эту лампу напихаете диоды большей мощности , главное чтобы компоненты соответствовали мощности нагрузки )).

Здравствуйте, если поставить 2 шт С1 на 1000 — в параллель, увеличится ток в 2 раза? Или даже 3 — тогда в 3 — ток?

Да, чем больше значение емкости конденсатора C1, тем меньше сопротивление переменному току и тем больше протекающий ток.

Лампа » мигала » умерла микросхема . Благодаря Вашей информации переделал питание — теперь она чудесно освещает ванную комнату ! Спасибо !

Олег, перепад и падение напряжения на светодиоде это один хрен, ты наверно рассуждаешь о гидросооружениях, там перепад и падение да, не один хрен ))))))

Схема светодиодной лампы: устройство простейших драйверов

Светодиодные источники света быстро завоевывают популярность и вытесняют неэкономичные лампы накаливания и опасные люминесцентные аналоги. Они эффективно расходуют энергию, долго служат, а некоторые из них после выхода из строя подлежат ремонту.

Чтобы правильно произвести замену или починку сломанного элемента, потребуется схема светодиодной лампы и знание конструкционных особенностей. А эту информацию мы в деталях рассмотрели в нашей статье, уделив внимание разновидностям ламп и их конструкции. Также мы привели кратких обзор устройства самых популярных led моделей от известных производителей.

Как устроена светодиодная лампа?

Близкое знакомство с конструкцией LED-светильника может потребоваться только в одном случае – если необходимо отремонтировать или усовершенствовать источник света.

Домашние умельцы, имея на руках комплект элементов, могут самостоятельно собрать лампу на светодиодах, но новичку это не по силам.

Зато, изучив схему и имея элементарные навыки работы с электроникой, даже новичок сможет разобрать лампу, заменить сломанные детали, восстановив функциональность прибора. Чтобы ознакомиться с подробными инструкциями по выявлению поломки и самостоятельному ремонту светодиодной лампы, переходите, пожалуйста, по этой ссылке.

Имеет ли смысл ремонт LED-лампы? Безусловно. В отличие от аналогов с нитью накаливания по 10 рублей за штуку, светодиодные устройства стоят дорого.

Предположим, «груша» GAUSS – около 80 рублей, а более качественная альтернатива OSRAM – 120 рублей. Замена конденсатора, резистора или диода обойдется дешевле, да и срок службы лампы своевременной заменой можно продлить.

Существует множество модификаций LED-ламп: свечи, груши, шары, софиты, капсулы, ленты и др. Они отличаются формой, размером и конструкцией. Чтобы наглядно увидеть отличие от лампы накаливания, рассмотрим распространенную модель в форме груши.

Если отвлечься от привычной формы, можно заметить только один знакомый элемент – цоколь. Размерный ряд цоколей остался прежним, поэтому они подходят к традиционным патронам и не требуют смены электросистемы. Но на этом сходство заканчивается: внутреннее устройство светодиодных приборов намного сложнее, чем у ламп накаливания.

LED-лампы не предназначены для работы напрямую от сети 220 В, поэтому внутри устройства заключен драйвер, являющийся одновременно блоком питания и управления. Он состоит из множества мелких элементов, основная задача которых – выпрямить ток и снизить напряжение.

Разновидности схем и их особенности

Чтобы создать оптимальное напряжение для работы устройства на диодах, драйвер собирают на основе схемы с конденсатором или понижающим трансформатором. Первый вариант – более дешевый, второй применяют для оснащения мощных ламп.

Существует и третья разновидность – инверторные схемы, которые реализуют или для сборки диммируемых ламп, или для устройств с большим числом диодов.

Вариант #1 — с конденсаторами для снижения напряжения

Рассмотрим пример с участием конденсатора, так как подобные схемы являются распространенными в бытовых лампах.

Конденсатор C1 защищает от помех электросети, а C4 сглаживает пульсации. В момент подачи тока два резистора – R2 и R3 – ограничивают его и одновременно предохраняют от короткого замыкания, а элемент VD1 преобразует переменное напряжение.

Когда прекращается подача тока, конденсатор разряжается при помощи резистора R4. К слову, R2, R3 и R4 используются далеко не всеми производителями светодиодной продукции.

Для проверки конденсатора довольно часто используют мультиметр.

Минусы схемы с конденсаторами:

  1. Возможно перегорание диодов, так как стабильности подачи тока не наблюдается. Напряжение на нагрузке полностью зависит от напряжения питания.
  2. Отсутствует гальваническая развязка, поэтому существует риск удара током. Не рекомендуется во время разборки ламп прикасаться к токоведущим элементам, так как они находятся под фазой.
  3. Практически невозможно достичь высоких токов свечения, потому что для этого потребуется увеличение емкостей конденсаторов.

Однако преимуществ также немало, именно благодаря им конденсаторы остаются популярными. Плюсами являются простота сборки, широкий диапазон напряжений на выходе и невысокая стоимость.

Можно смело экспериментировать с самостоятельным изготовлением, тем более, часть деталей отыщется в старых приемниках или телевизорах.

Вариант #2 — с импульсным драйвером

В отличие от линейного драйвера с конденсатором, импульсный эффективно защищает светодиоды от перепадов напряжения и помех в сети.

Примером импульсного устройства служит популярная электронная модель CPC9909. Рассмотрим подробнее ее особенности. Эффективность ее использования достигает 98% — показателя, при котором действительно можно говорить об энергосбережении и экономии.

Питание устройства может происходить напрямую от высокого напряжения – до 550 В, так как драйвер оснащен встроенным стабилизатором. Благодаря этому же стабилизатору схема стала проще, а стоимость – ниже.

Микросхему успешно используют для разработки электросетей аварийного и резервного освещения, так как она подходит для схем повышающих преобразователей.

В домашних условиях на базе CPC9909 чаще всего собирают светильники с питанием от батарей или драйверы с мощностью, не превышающей 25 В.

Вариант #3 — с диммируемым драйвером

Регулировка яркости свечения осветительных приборов позволяет установить в помещении нужный уровень освещения. Это удобно при создании отдельных зон, снижении яркости света в дневное время или для подчеркивания предметов интерьера.

С помощью диммера использование электроэнергии становится более рациональным, а ресурс службы электроприбора увеличивается.

Существует два вида диммируемых драйверов, каждый из которых обладает своими преимуществами. Первые работают с ШИМ-управлением.

Их устанавливают между лампой и блоком питания. Энергия подается в виде импульсов разной длительности. Пример использования драйвера с ШИМ-регулировкой – бегущая строка.

Диммируемые драйверы второго вида воздействуют непосредственно на источник питания и применяются для устройств со стабилизированным током.

При регулировании тока может происходить изменение оттенка свечения: диоды белого цвета при уменьшении тока начинают излучать слегка желтый свет, а при увеличении – синий.

Краткий обзор и тестирование популярных LED-ламп

Хотя принципы построения схем драйверов различных осветительных устройств похожи, между ними имеются отличия и в последовательности подключения элементов, и в их выборе.

Рассмотрим схемы 4 ламп, которые продаются в свободном доступе. При желании их можно отремонтировать своими руками.

Читать еще:  Минусы светлой кухни

Светодиодная лампа на 220 вольт GL5.5 с импульсным драйвером на микросхеме BP3122

Сначала о драйвере. Микросхема BP3122 специально разработана для светодиодного освещения и является высокоэффективной микросхемой импульсного источника питания с встроенными полевыми транзисторами (650V), что сводит к минимуму количество внешних элементов, позволяет уменьшить размеры платы и, соответственно, стоимость драйвера.

Стабилизация тока через светодиоды реализована без оптопары, цепи обратной связи на TL431 и вспомогательной обмотки трансформатора. Вместе с тем минимизировано количество внешних компонентов. Пусковой ток составляет 60 мкА . Конденсатор в цепи питания VCC заряжается через пусковой резистор при включении. Как только напряжение VCC достигнет пускового порога, BP3122 начнет вырабатывать импульсы. Напряжение питания микросхемы стабилизирует внутренний стабилизатор на 15V. Сверхнизкий ток потребления микросхемы не требует наличия вспомогательной обмотки на трансформаторе для питания микросхемы.

Для стабилизации выходного тока через светодиоды к выводу SC подключается внешний резистор, через который протекает ток выходного полевого транзистора. Падение напряжения на резисторе сравнивается на компараторе с внутренним источником опорного напряжения 500 мВ. Таким образом изменяется скважность импульсов и поддерживается постоянный ток через светодиоды с точностью плюс/минус 5%.

Рекомендуемая выходная мощность микросхемы не более 5 Вт, а стабилизация выходного тока поддерживается в диапазоне входных напряжений переменного тока от 85 до 265 вольт. Максимальная частота переключения при нормальной работе составляет 65 — 70 кГц. В микросхеме реализованы: защита от короткого замыкания, защита от перенапряжения, защита от перегрева (порог 150 ℃ с гистерезисом 25 ℃) и другие. Если неисправность устранена, система восстановится и начнет нормально работать.

Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным.

Теперь, собственно, о лампе GL5.5 – E27. Срок службы, продекларированный производителем, 50 000 часов. Гарантию в магазине дали на пол года. А на традиционные энергосберегающие дают год.

Китайские производители не оговаривают снижение яркости в процессе эксплуатации, а оно может достигать 50% и более в течение 1-2 лет и зависит от степени превышения номинальных режимов светодиодов. А цена у таких ламп пока-что, как у «вечных», хотя качественные диодные лампы стоят в разы дороже. Лампа будет светить, возможно, и 20 лет, но вы ее замените гораздо раньше, т.к. свет этот будет со временем все тусклее и тусклее. А причина простая, чтобы получить хорошую яркость дешевые светодиоды загоняют в жесткий режим. Нагрев таких светодиодов более 50 градусов даже на радиаторе, то есть они подвержены ускоренной деградации.

На выходе драйвера лампы GL5.5 установлены две параллельные цепочки из трех последовательно включенных светодиодов. Вместо предохранителя установлен резистор 2,2 Ом. При входном напряжении сети переменного тока 236 вольт напряжение на светодиодах составило 9,37 вольта постоянного тока. Ток через диоды – 250 мА. Получаем мощность около 2,5 Вт, до 50% которой уходит на нагрев светодиодов.

Все шесть светодиодов установлены на очень тонкой плате, приклеенной к алюминиевой пластине, которая крепится к алюминиевому радиатору с помощью двух винтов. В пластмассовой части лампы имеются вентиляционные отверстия.

Схема драйвера собрана на печатной плате с двухсторонним монтажом элементов. При включении лампы наблюдается задержка 0.5-1 сек до начала свечения. Стеклянный плафон рассеивает свет, а без плафона свет направленный и более яркий. Исходя из этого сравнение диодных ламп и ламп накаливания очень условно, но данную лампу можно приравнять к 40 ваттной лампе накаливания по силе света. Количество светодиодов и их размеры как в светильнике на 3 Вт, но они более мощные.

Как отремонтировать светодиодную лампочку на 220 В

В попытках снизить расходы на электроэнергию, мы меняем лампы накаливания на более экономичные. Лучшими считаются светодиодные, так как при малом потреблении тока они дают яркий свет. И производитель заявляет, что работать они должны не менее 30 лет, но по факту через полгода эксплуатации просто не зажигаются. Учитывая высокую стоимость LED ламп, это совсем не весело. Хорошая новость в том, что ремонт светодиодной лампочки не слишком сложная задача. Проблему можно решить имея минимальный набор инструментов. В некоторых случаях, можно даже обойтись без паяльника.

Устройство светодиодной лампочки на 220 В

Самостоятельный ремонт светодиодной лампочки возможен, только если вы представляете себе из каких деталей она состоит и как все это работает. Это позволит самому искать неисправности. Устройство LED лампочки не слишком сложное. Если смотреть снаружи, можно выделить три части:

  • пластиковый или стеклянный светорассеиватель,
  • металлический, пластиковый или керамический радиатор для отвода тепла,
  • цоколь одного из стандартов.

Чтобы отремонтировать светодиодную лампочку своими руками, надо будет добраться до внутренностей — все проблемы сконцентрированы тут.

Из каких частей состоит светодиодная лампа

Если разобрать LED лампу, внутри обнаружим электрическую часть, где и будем искать повреждения. Это:

  • Преобразователь/стабилизатор напряжения или драйвер. Находится наполовину в цоколе, наполовину в радиаторе теплоотвода.
  • Плата со светодиодами.

Как видите, не слишком сложно, хотя вариаций море. Например, в некоторых моделях драйвер распаян на той же плате, где крепятся светодиоды. Это «эконом» решение и встречается обычно в дешевых лампочках. В других светодиод один. Это, наоборот, дорогие модели, так как один большой и мощный светодиод стоит значительно больше, чем куча маленьких с той же (или большей) мощностью свечения.

Схемы LED лампочек

Светодиоды питаются от низкого напряжения — порядка 3 В, потребляют очень мало тока — от 20 до 50 мкА, подключать их к сети 220 В можно только через преобразователь. Его можно увидеть в нижней части лампы. Схема светодиодной лампочки на 220 В тоже несложная, зато по ней легко определить возможные проблемы.

Схема светодиодной лампы на 220 V

На рисунке выше представлена схема с диодным мостом. Он преобразует и стабилизирует напряжение. Это один из самых распространенных вариантов, так как такие лампы стоят не очень дорого. Как видите, в данном варианте диоды подключены параллельно, но это редкий вариант. Чаще они подключаются последовательно — один за другим.

Есть и другие светодиодные лампочки. В них присутствует микросхема. Такие лампы более дорогие, но обычно и более долговечные, так как параметрами работы управляет микроконтроллер, который выдает более стабильное питание. А некачественное питание равно быстрому снижению яркости свечения. Резкие скачки напряжения вообще приводят к пробою светодиода. Так как подключены они последовательно — один за другим — выход из строя одного светодиода означает поломку всей лампы. Она просто не зажигается. Хотя не работает, скажем, один светодиод из 80.

Как разобрать

Ремонт светодиодной лампочки начинается с того, что ее надо разобрать. Вакуума в ней нет, так что это возможно. Светорассеиватель и цоколь обычно без проблем отделяются. Они соединяются при помощи насечек на различных частях.

В большинстве своем части светодиодной лампы держатся на защелках

Есть два варианта. Более простой при разборке и более сложный. В простом детали лампы соединены только за счет механических защелок. В более сложном кроме защелок есть еще и силикон, который обеспечивает водонепроницаемость лампы. Такие экземпляры можно эксплуатировать при повышенной влажности. Разбирать светодиодную лампу нужно так:

  • Зажать в руках цоколь и повернуть против часовой стрелки радиатор. Светорассеиватель снимается точно также.
  • В некоторых ЛЭД лампочках соединения залиты силиконом. В этом случае поворачивай, не поворачивай, ничего не двигается. Присмотревшись, можно увидеть герметик. В этом случае нужен растворитель. Его набираете в шприц (без иголки или с толстой иглой), аккуратно вводите жидкость по периметру. Выдержать его надо 5-10 минут, после чего снова повторить попытку. С первого раза обычно не получается разобрать светодиодную лампочку, но три-четыре захода помогают.
Читать еще:  Много ли электроэнергии потребляет теплый пол

Платы внутри лампы или вставляются в пазы, или также держатся на защелках. Их проще отодвинуть плоской отверткой, одновременно выдавливая плату вверх. Усилия не должны быть чрезмерными, так как защелки пластиковые и могут сломаться.

Характерные поломки

Так как вы решили ремонтировать LED лампочку своими руками, предполагается, что у вас есть тестер или мультиметр и вы умете проводить элементарные измерения. Еще необходим будет паяльник, но с тонким жалом и маломощный. Без него можно обойтись, но надо будет искать замену. Паять паяльником тоже надо хоть немного уметь. А еще надо бы иметь пинцет, кусачки и утики. Утики или утконосы — это ручной инструмент, похожий на миниатюрные пассатижи с длинными захватами — ими удобно держать мелкие детали, но можно обойтись и пинцетом. А еще запчасти. Их придется приобретать по мере выявления неисправности. Хорошо, если есть вторая нерабочая лампа. Ее можно использовать как донор — забирать оттуда нужные детали.

Заявленный срок службы светодиодных ламп чуть ли не полвека, а через полгода накапливается несколько штук нерабочих

Пробой светодиода

Как уже говорили, в светодиодной лампочке кристаллы подключены последовательно. С выхода одного провод идет на вход другого и так оббегает все элементы. Схема очень простая. Но если хоть один кристалл не рабочий, лампочка не будет гореть. А выходят из строя кристаллы часто, поэтому первым делом проверяем их. Тем более, их легко найти в любой модели. Схема для проверки не нужна.

Для начала внимательно осмотрите все кристаллы. Те, которые нормально себя «чувствуют» имеют светлую ровную окраску. Вас должны насторожить темные пятна. Если на кристаллах есть темные, почти черные точки, эти светодиоды, скорее всего, пробиты. Их меняем однозначно. Если поверхность немного темнее, кристаллы еще светят, но уже «на последнем дыхании» и скоро перегорят, то их тоже лучше заменить сейчас.

Выгоревший светодиод имеет на поверхности темное пятно

Чтобы убедиться в исправности или неисправности светодиодов, можно использовать мультиметр. Его переключают в режим прозвонки, щупы прикладывают к контактам светодиода. Если ток для работы светодиода нужен небольшой, исправные светодиоды загораются. Второй вариант проверки — батарейка на 3-4 Вольта, к контактам которой припаяны провода. Эти провода (с соблюдением полярности) прикладываем к кристаллам. Исправные загораются, а неисправные остаются темными.

Как выпаять поврежденные светодиоды

До этого момента все просто и понятно, ремонт светодиодной лампочки трудностей, пока, не представляет. Теперь надо решить, как паять мелкие светодиоды. Вся штука в том, что они припаяны на подложку, хорошо проводящую тепло. То есть, прогревая контакт одного светодиода вы, одновременно, греете всю плату. Если действовать маломощным паяльником понадобится слишком много времени. Мощный — тоже не вариант, так как перегреть очень легко. Максимальная температура, которую кристаллы выносят без последствий — 80°C. При дальнейшем нагреве быстро идет разрушение, поэтому при ремонте светодиодной лампочки основная задача — как можно меньше нанести вреда остальным элементам.

Точечного нагрева все равно не выйдет, но можно попытаться нанести минимальный урон соседним кристаллам. Для этого сначала выкусываем/выламываем пластину кристалла, а оставшиеся металлические ножки прогреваем маломощным (на 20 Вт) паяльником и удаляем.

Выпаиваем поврежденные светодиоды

Если маломощного паяльника нет, можно использовать утюг. Его надо жестко закрепить (например, при помощи струбцины) и выставить на средний режим. Для минимизации «поля нагрева» лучше использовать носик утюга. Греть в этом случае будем всю плату. Вернее, греть будем тот край, на котором находится поврежденный светодиод, но прогреваться будет вся плата. И в этом минус этого способа — от перегрева кристаллы мутнеют и быстро выходят из строя. Поэтому весь фокус в том, чтобы, как только будет возможно, быстро удалить поврежденный кристалл.

Перед началом работы все неисправные кристаллы окрашиваем маркером. Поворачиваем плату так, чтобы место с прогоревшими элементами было на платформе утюга. Постоянно тянем поврежденный элемент вверх, зажав его щипцами. Как только он оторвался, пробуем расположенные рядом поврежденные. Если они оторвались — отлично. Нет — поворачиваем плату так, чтобы больше нагревался поврежденный элемент. Потом сразу снимаем плату и оставляем остывать. Никаких специальных средств для быстрого остывания! Просто положите, пусть сама охлаждается.

Как припаять новые светодиоды

На месте выпаянных светодиодов остаются контактные площадки. На них наносим каплю флюса для пайки, сверху выкладываем исправные (с соблюдением полярности) и снова прогреваем, но на этот раз на кристалл надавливаем. Когда его ножки «войдут» в припой, плату снимаем или переворачиваем. Если светодиода нет, можно вместо него впаять отрезок проволоки. Светить лампа будет чуть тусклее, но работать будет. Да! Этот фокус работает, только если на плате десять и больше кристаллов.

В некоторых случаях вместо сгоревших светодиодов можно использовать проволочные перемычки

В видео представлен другой способ замены. Нужно найти похожий светодиод на ленте, вырезать его и вместе с подложкой припаять на место удаленного.

Еще один способ пайки мелких светодиодов. Он, кажется, наиболее реальным без применения спецтехники. Можно выпаять диоды при помощи небольшой газовой горелки.

Повреждения в драйвере

Если визуально все светодиоды нормальные или их уже поменяли, ремонт светодиодной лампочки продолжаем, рассматривая драйвер. Некоторые повреждения легко установить визуально. Почерневшие или треснувшие резисторы, вздутые емкости. Если присмотреться, то это все заметно. Если визуально ничего не определяется, берем тестер, проверяем целостность компонентов.

Могут быть сгоревшие сопротивления и потекшие/вздутые конденсаторы

Еще бывает так, что все элементы абсолютно нормальны, а светодиодная лампочка все равно не горит. Скорее всего, это плохая сборка. Надо проверять все места пайки. Если недостаточно прогреть место пайки, через время от постоянных температурных изменений контакт ухудшится или пропадет совсем. В первом случае лампочка то горит, то нет. Во втором, просто перестает работать. Подносим все места пайки к свету и внимательно смотрим. Если обнаруживаем трещину в пайке — это оно. Холодная пайка. Далее просто хорошо прогреваем это место паяльником.

Холодная пайка — одна из причин поломки светодиодных ламп

Очень редко выходят из строя диодные мосты, поэтому их проверяем в последнюю очередь. Если диод таки пробит, его выпаиваем, повторно проверяем (по идее, их проверять надо только выпаяв), если повреждение подтвердилось, ставим аналогичный. Не перепутайте подключение, иначе работать ничего не будет. В общем, ремонт светодиодной лампочки не слишком сложная задача. Обойдется он значительно меньше, чем новая лампочка. А вы, по пути, можете усовершенствовать конструкцию. В результате перегорать ЛЭД лампочки будут реже. В любом случае вы ничего (почти) не теряете.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector